160 research outputs found

    Effectiveness Of Digital Media Technologybased Interventions On HIV & STI Risk Reduction Among Young People: A Metaanalysis

    Get PDF
    Background: Prevention strategies delivered through digital media technology (DMT) have been developed to reduce HIV incidence among young people. However, no best-practice DMT intervention strategies exist in handling HIV prevention programs among young people. Objectives: To determine the effectiveness of DMT-based interventions in reducing risk-taking behaviours among young people that may predispose them to acquiring HIV and other sexually transmitted infections. Subjects and Selection Criteria: Randomized controlled trials and quasi-experimental studies with rigorous controls comparing DMT-based interventions and controls on reducing risk-taking behaviors among young people aged 10-24 years were included. Data Collection: Search methods were done on the following: MEDLINE, CENTRAL, Trials Register, Google Scholar, ScienceDirect, TRIP database, HERDIN, reference lists, & local databases until December 2017. Analysis: Statistical analysis was done using Review Manager Version 5.3, heterogeneity examined, and analyses done under random effects model. Condom use, sexual behavior, number of sexual partners, STI testing, and sexual health knowledge in standardized effect sizes were calculated with 95% confidence intervals. Data were analyzed in subgroups: Didactics, Modules, Virtual decision-making. Main Results: Identified sixteen studies with 7925 subjects comparing DMT interventions and controls. DMT interventions significantly increased condom use (d=0.29, 95% CI 0.18-0.41;

    Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1

    Get PDF
    Multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS) is the leading cause of non-traumatic neurological disability in young adults. Immune mediated destruction of myelin and oligodendrocytes is considered the primary pathology of MS, but progressive axonal loss is the major cause of neurological disability. In an effort to understand microglia function during CNS inflammation, our laboratory focuses on the fractalkine/CX3CR1 signaling as a regulator of microglia neurotoxicity in various models of neurodegeneration. Fractalkine (FKN) is a transmembrane chemokine expressed in the CNS by neurons and signals through its unique receptor CX3CR1 present in microglia. During experimental autoimmune encephalomyelitis (EAE), CX3CR1 deficiency confers exacerbated disease defined by severe inflammation and neuronal loss. The CX3CR1 human polymorphism I249/M280 present in ∼20% of the population exhibits reduced adhesion for FKN conferring defective signaling whose role in microglia function and influence on neurons during MS remains unsolved. The aim of this study is to assess the effect of weaker signaling through hCX3CR1I249/M280 during EAE. We hypothesize that dysregulated microglial responses due to impaired CX3CR1 signaling enhance neuronal/axonal damage. We generated an animal model replacing the mouse CX3CR1 locus for the hCX3CR1I249/M280 variant. Upon EAE induction, these mice exhibited exacerbated EAE correlating with severe inflammation and neuronal loss. We also observed that mice with aberrant CX3CR1 signaling are unable to produce FKN and ciliary neurotrophic factor during EAE in contrast to wild type mice. Our results provide validation of defective function of the hCX3CR1I249/M280 variant and the foundation to broaden the understanding of microglia dysfunction during neuroinflammation. © 2018 Cardona et al

    Oxygen Abundance in the Template Halo Giant HD 122563

    Get PDF
    HD 122563 is a well-known bright (V ¼ 6:2) halo giant of low metallicity ((Fe/H ��� 2:7). We have observed HD 122563 for infrared OH lines at 1.5-1.7 lm in the H band with the NIRSPEC high-resolution spectrograph at the 10 m Keck Telescope. Optical spectra were obtained with the UVES spectrograph at the 8 m VLT UT2 telescope at ESO (Paranal) and the FEROS spectrograph at ESO (La Silla). Based on the opti- cal high-resolution data, a detailed analysis has been carried out, and data on the forbidden (O i) 6300 Aline, unblended by telluric or sky lines, was obtained with the FEROS spectrograph. Signal-to-noise ratios of 200- 400 were obtained at resolutions of 37,000 in the H band and 45,000 in the optical. For the analysis we have adopted a photometric effective temperature Teff ¼ 4600 K. Two values for the gravity were adopted: a value deduced from ionization equilibrium, log g ¼ 1:1, with corresponding metallicity (Fe/H �¼� 2:8 and micro- turbulence velocity vt ¼ 2: 0k m s � 1 ; and log g ¼ 1:5, derived from the Hipparcos parallax, implying (Fe/H �¼� 2:71 and vt ¼ 2: 0k m s � 1 . The forbidden (O i) 6300 Aand the permitted O i 7771 Alines give O/Fe ratios essentially insensitive to model parameter variations, whereas the oxygen abundances from OH lines are sensitive to gravity, giving (O/Fe �¼þ 0:9 and +0.7, respectively, for log g ¼ 1:1 and 1.5. We derive the following oxygen abundances: for model 1, (O/Fe �¼þ 0:6, +1.1, and +0.9; and for model 2, (O/Fe �¼þ 0:6, +1.1, and +0.7, based on the (O i) 6300 A ˚ ,O i 7771 A ˚ , and IR OH 1.6 lm lines, respectively. The different oxygen abundance indicators give different oxygen abundances, illustrating the problem of oxy- gen abundance derivation in metal-poor giants. This is important because the age of globular clusters and the production of Li, Be, and B from spallation of C, N, and O atoms in the early Galaxy depend on the oxygen abundance adopted for the metal-poor stars. Subject headings: stars: abundances — stars: individual (HD 122563) — stars: Population II On-line material: machine-readable tabl

    A Pilot Study Identifying Brain-Targeting Adaptive Immunity in Pediatric Extracorporeal Membrane Oxygenation Patients with Acquired Brain Injury

    Get PDF
    OBJECTIVES: Extracorporeal membrane oxygenation provides short-term cardiopulmonary life support, but is associated with peripheral innate inflammation, disruptions in cerebral autoregulation, and acquired brain injury. We tested the hypothesis that extracorporeal membrane oxygenation also induces CNS-directed adaptive immune responses which may exacerbate extracorporeal membrane oxygenation-associated brain injury. DESIGN: A single center prospective observational study. SETTING: Pediatric and cardiac ICUs at a single tertiary care, academic center. PATIENTS: Twenty pediatric extracorporeal membrane oxygenation patients (0-14 yr; 13 females, 7 males) and five nonextracorporeal membrane oxygenation Pediatric Logistic Organ Dysfunction score matched patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Venous blood samples were collected from the extracorporeal membrane oxygenation circuit at day 1 (10-23 hr), day 3, and day 7 of extracorporeal membrane oxygenation. Flow cytometry quantified circulating innate and adaptive immune cells, and CNS-directed autoreactivity was detected using an in vitro recall response assay. Disruption of cerebral autoregulation was determined using continuous bedside near-infrared spectroscopy and acquired brain injury confirmed by MRI. Extracorporeal membrane oxygenation patients with acquired brain injury (n = 9) presented with a 10-fold increase in interleukin-8 over extracorporeal membrane oxygenation patients without brain injury (p \u3c 0.01). Furthermore, brain injury within extracorporeal membrane oxygenation patients potentiated an inflammatory phenotype in adaptive immune cells and selective autoreactivity to brain peptides in circulating B cell and cytotoxic T cell populations. Correlation analysis revealed a significant relationship between adaptive immune responses of extracorporeal membrane oxygenation patients with acquired brain injury and loss of cerebral autoregulation. CONCLUSIONS: We show that pediatric extracorporeal membrane oxygenation patients with acquired brain injury exhibit an induction of pro-inflammatory cell signaling, a robust activation of adaptive immune cells, and CNS-targeting adaptive immune responses. As these patients experience developmental delays for years after extracorporeal membrane oxygenation, it is critical to identify and characterize adaptive immune cell mechanisms that target the developing CNS

    Visualization and Quantification of Post-Stroke Neural Connectivity and Neuroinflammation Using Serial Two-Photon Tomography in the Whole Mouse Brain

    Get PDF
    Whole-brain volumetric microscopy techniques such as serial two-photon tomography (STPT) can provide detailed information on the roles of neuroinflammation and neuroplasticity throughout the whole brain post-stroke. STPT automatically generates high-resolution images of coronal sections of the entire mouse brain that can be readily visualized in three dimensions. We developed a pipeline for whole brain image analysis that includes supervised machine learning (pixel-wise random forest models via the “ilastik” software package) followed by registration to a standardized 3-D atlas of the adult mouse brain (Common Coordinate Framework v3.0; Allen Institute for Brain Science). These procedures allow the detection of cellular fluorescent signals throughout the brain in an unbiased manner. To illustrate our imaging techniques and automated image quantification, we examined long-term post-stroke motor circuit connectivity in mice that received a motor cortex photothrombotic stroke. Two weeks post-stroke, mice received intramuscular injections of pseudorabies virus (PRV-152), a trans-synaptic retrograde herpes virus driving expression of green fluorescent protein (GFP), into the affected contralesional forelimb to label neurons in descending tracts to the forelimb musculature. Mice were sacrificed 3 weeks post-stroke. We also quantified sub-acute neuroinflammation in the post-stroke brain in a separate cohort of mice following a 60 min transient middle cerebral artery occlusion (tMCAo). Naive e450+-labeled splenic CD8+ cytotoxic T cells were intravenously injected at 7, 24, 48, and 72 h post-tMCAo. Mice were sacrificed 4 days after stroke. Detailed quantification of post-stroke neural connectivity and neuroinflammation indicates a role for remote brain regions in stroke pathology and recovery. The workflow described herein, incorporating STPT and automated quantification of fluorescently labeled features of interest, provides a framework by which one can objectively evaluate labeled neuronal or lymphocyte populations in healthy and injured brains. The results provide region-specific quantification of neural connectivity and neuroinflammation, which could be a critical tool for investigating mechanisms of not only stroke recovery, but also a wide variety of brain injuries or diseases

    B Cells Migrate into Remote Brain Areas and Support Neurogenesis and Functional Recovery after Focal Stroke in Mice

    Get PDF
    Lymphocytes infiltrate the stroke core and penumbra and often exacerbate cellular injury. B cells, however, are lymphocytes that do not contribute to acute pathology but can support recovery. B cell adoptive transfer to mice reduced infarct volumes 3 and 7 d after transient middle cerebral artery occlusion (tMCAo), independent of changing immune populations in recipient mice. Testing a direct neurotrophic effect, B cells cocultured with mixed cortical cells protected neurons and maintained dendritic arborization after oxygen-glucose deprivation. Whole-brain volumetric serial two-photon tomography (STPT) and a custom-developed image analysis pipeline visualized and quantified poststroke B cell diapedesis throughout the brain, including remote areas supporting functional recovery. Stroke induced significant bilateral B cell diapedesis into remote brain regions regulating motor and cognitive functions and neurogenesis (e.g., dentate gyrus, hypothalamus, olfactory areas, cerebellum) in the whole-brain datasets. To confirm a mechanistic role for B cells in functional recovery, rituximab was given to human CD20+ (hCD20+) transgenic mice to continuously deplete hCD20+-expressing B cells following tMCAo. These mice experienced delayed motor recovery, impaired spatial memory, and increased anxiety through 8 wk poststroke compared to wild type (WT) littermates also receiving rituximab. B cell depletion reduced stroke-induced hippocampal neurogenesis and cell survival. Thus, B cell diapedesis occurred in areas remote to the infarct that mediated motor and cognitive recovery. Understanding the role of B cells in neuronal health and disease-based plasticity is critical for developing effective immune-based therapies for protection against diseases that involve recruitment of peripheral immune cells into the injured brain

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    corecore